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Abstract In this paper we show how a deeper analysis of the

clustering coefficient in a network can be used to assess

functional connections in the human brain. Our metric of

edge clustering centrality considers the frequency at which

an edge appears across all local subgraphs that are induced by

each vertex and its neighbors. This analysis is tied to a

problem from structural graph theory in which we seek the

largest subgraph that is a Cartesian product of two complete

bipartite graphs K1;m and K1;1. We investigate this property

and compare it to other known edge centrality metrics.

Finally, we apply the property of clustering centrality to an

analysis of functional MRI data obtained, while healthy

participants pantomimed object use or identified objects.

Keywords Edge clustering centrality � Functional MRI

data � Tool viewing � Tool pantomiming

Mathematics Subject Classification 05C12 � 90B18

1 Introduction

In a social network, certain individuals are well connected

and are more central to the network than others. Various

centrality metrics have been investigated including

betweenness centrality, closeness centrality, degree cen-

trality, and eigenvalue centrality (Borgatti et al. 2013;

Pavlopoulos et al. 2011). All of these metrics are linked to

the same goal—finding a vertex (or vertices) that are most

central within a network. However, one can also seek the

edge (or edges) with the greatest centrality. This idea has

been the topic of studies involving edge betweenness cen-

trality (Girvan and Newman 2002; Newman 2010). The

edge betweenness centrality of an edge e is the number of

shortest paths between two vertices u and v that contain e,

divided by the number of shortest paths between two ver-

tices u and v, summed over all pairs of distinct vertices u and

v. Another metric for assessing edge centrality is spanning

edge centrality where the centrality of an edge is measured

by the ratio of spanning trees that contain it. In this paper we

introduce a new property, edge clustering centrality, which

measures the centrality of edges in a network.

A property that has been ubiquitous in social network

literature has been the clustering coefficient (Holland and

Leinhardt 1971; Watts and Strogatz 1998). For this property

we consider the number of existing friendships in each per-

son’s network (including themselves) compared to the total

number of possible friendships within this local network.

Then these quantities are averaged over all friends. This

value is known as the clustering coefficient. In a sense, the

clustering coefficient measures how closely knit a commu-

nity network is. A deeper analysis of the clustering coeffi-

cient can be conducted so that we can see which pair is most

central to the network, that is, how many people know both

people in a particular relationship? This has appeared in the
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social media, as noted in a New York Times article by Alex

Williams (www.nytimes.com/2014/08/14/fashion/power-

couples-on-twitter-and-instagram.html?_r=0), where celeb-

rity couples have been ‘‘leveraging their influence on social

media to frame themselves as a public unit, a powerfully

synchronous commodity.’’ As part of our analysis, we will

investigate the prominence of the influence of a pair in a

social network.

A classic example is at a wedding, where guests know

either the bride or the groom, and a large number of people

know both. In all likelihood, the wedding couple has the

most central relationship in the network (see Fig. 1).

We will call this type of analysis ‘‘clustering centrality’’

which is closely related to the clustering coefficient.

We begin by reviewing the property of the clustering

coefficient. The clustering coefficient (closed version) is

defined to be

CCðGÞ ¼ 1

n

X
i

2 EðGiÞj j
VðGiÞj j � VðGiÞj j � 1ð Þ

where each local subgraph Gi is the subgraph which

includes the vertex i and all of its neighbors. The vertex

and edge sets of Gi will be denoted VðGiÞ and EðGiÞ
respectively.

We consider the following example (Fig. 2).

The local subgraphs are as follows (Fig. 3).

For each of the cases, we calculate the number of edges in

the local subgraph compared to the number of possible

edges: GA : 3=3, GB : 8=10, GC : 6=6, GD : 6=6, and

GE : 8=10. The closed clustering coefficient is the average of

these fractions: CCðGÞ ¼ 1
5
1þ 0:8þ 1þ 1þ 0:8ð Þ ¼ 0:92.

This high value indicates that the graph is highly connected;

however, this single number does not capture some of the

finer aspects of this network.

By seeking edges that appear in multiple local sub-

graphs, we can identify edges that are more important to

the network as a whole. We start by combining all of the

local subgraphs (counting multiplicities) into a single graph

TG. The result is shown in Fig. 4.

This idea forms the cases for a new measure which we

will call edge clustering centrality. The edge clustering

centrality of an edge is CcentðeÞ ¼
X

i
fiðeÞ where fiðeÞ ¼ 1

if e 2 E Gið Þ and fiðeÞ ¼ 0 if e 62 E Gið Þ and Gi is the closed

Fig. 1 A wedding network with darker edges showing people

connected to both the bride and groom

Fig. 2 A graph with 5 vertices

and 8 edges

Fig. 3 The local subgraphs of G

Fig. 4 Combination of local

subgraphs
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neighborhood of vertex i. In our example, CcentðEBÞ ¼ 5,

CcentðBCÞ ¼ CcentðBDÞ ¼ CcentðCDÞ ¼ CcentðCEÞ ¼
CcentðDEÞ ¼ 4, and CcentðAEÞ ¼ CcentðABÞ ¼ 3. Since EB

has the highest clustering centrality, it can be considered

more important to the network’s connectivity, whereas

edges AB and AE can be considered of lesser importance.

In this paper we will explore the property of clustering

centrality. We first show it can be formulated as a problem

in structural graph theory. Next we show how it differs

from other centrality metrics, and finally we apply it to a

real-world problem involving the analysis of functional

connectivity of the human brain.

2 Edge clustering centrality

Computing the frequencies that edges appear across all

local subgraphs is straightforward. The problem of finding

the edge with the greatest frequency can be linked to a

problem in extremal graph theory. The graph shown in

Fig. 5 is an example of a Cartesian Product of two com-

plete bipartite graphs K1;m and K1;1 and is known as a book

graph Bm (with K1;1 serving as the ‘‘spine’’) (Sun 1994;

Liang 1997; Barioli 1998; Shi and Song 2007) and has

been a focus of studies in Graph Ramsey Theory

(Radziszowski et al. 2014). In our analysis, we will search

for the maximum sized book graph H found in a graph

G. The spine of the graph H will have the highest edge

clustering centrality of any edge in G.

We note that the edge clustering centrality of an edge e

in a graph G can be computed simply by counting the

number of triangles in G containing e—a computation for

which efficient algorithms exist. Looking back to the

wedding example in Fig. 1, the darker edges correspond to

the book graph B6.

2.1 Comparison with other edge centrality

properties

We next show that edge clustering centrality differs from

other known edge centrality metrics, including edge

betweenness centrality, j-path centrality, and spanning

edge centrality. The most well-known edge centrality

property is edge betweenness centrality introduced by

Freeman (1977) and later used in modularity algorithms by

Girvan and Newman (2002) and Newman (2010).

Definition 1 The edge betweenness centrality of an edge

e, denoted bc(e), measures the frequency at which e

appears on a shortest path between two distinct vertices x

and y. Let rxy be the number of shortest paths between

distinct vertices x and y, and let rxyðeÞ be the number of

shortest paths between x and y that contain e. Then bcðeÞ ¼
X

x;y

rxyðeÞ
rxy

(for all distinct vertices x, and y).

Edge clustering centrality works especially well in

dense graphs; however, sparse graphs may have edges

that are not contained in any triangles and thus these

edges will have an edge clustering centrality of zero.

Hence, for sparse graphs such as paths or cycles, edge

betweenness centrality would be preferable to use. How-

ever, this may not be true for dense graphs. We will show

in the next example if the graph contains a book graph as

a subgraph, edge clustering centrality can give a better

measure of edge centrality.

We consider the graph shown in Fig. 1. Using the

betweenness centrality script from MATLAB BGL (https://

www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/),

we find that the edge with the largest betweenness cen-

trality is the edge connecting the bride to one of the women

on the right (see Fig. 6). As a result while this edge is more

central in terms of betweenness centrality, it is may not be

the most central edge in the network.

A variant of betweenness centrality is j-path edge

centrality which was proposed by De Meo et al. (2012).

Here, the k-path edge centrality index of an edge is the

number of shortest paths of length less than or equal to j
that contain the given edge. In graphs with small diameter,

j-path edge centrality will be similar to edge betweenness

centrality. Another centrality metric that has appeared in

the literature is spanning edge centrality, where the span-

ning edge centrality of an edge is the fraction of the

spanning trees that contain the given edge (Mavroforakis

Fig. 5 The book graph B4 with spine u� v

Fig. 6 Betweenness centrality of the wedding network

Soc. Netw. Anal. Min.  (2016) 6:49 Page 3 of 8  49 

123



et al. 2015). However this metric is only applicable for

graphs that are connected. Furthermore, there can be con-

cerns if a graph contains a pendant edge (an edge incident

to a vertex with degree one). A pendant edge will typically

not be central to the graph, but it will have a high spanning

edge centrality (consistent with any cut-edge) since it will

appear in every spanning tree.

3 A real-world application

We will use centrality metrics from graph theory to model

brain connectivity. In our graph model, the vertices cor-

respond to physical regions of the brain [Regions of

Interest (ROIs)], and the undirected edges correspond to a

correlation in the functional activation profiles associated

with the two vertices. Functional Magnetic Resonance data

(fMRI) consist of a time course of Blood Oxygenated

Level Dependent (BOLD) contrast (activation) for every

voxel in space. Hence, an undirected edge is present in two

regions of the brain if there is a strong correlation between

the time series of BOLD signals between the respective

regions.

In our model of the brain, we have selected 12 regions

across the temporal, parietal and frontal lobes (see Fig. 7,

reproduced from Fig. 2 in Garcea et al., under review).

Of the 12 regions, the following are considered motor

areas: left dorsal premotor cortex, primary motor cortex for

the right hand, left ventral premotor cortex, primary motor

cortex for the right foot, primary motor cortex for the left

hand. Visual areas include the left lateral occipital complex

and right lateral occipital complex.

In addition, some of the 12 regions are ‘‘tool-prefer-

ring’’, meaning that they exhibit differential BOLD con-

trast when participants view images of manipulable objects

compared to various baseline categories of visual stimuli

(e.g., animals, houses). These regions include the left

ventral premotor cortex, left dorsal occipital cortex, left

and right medial fusiform gyri, the left posterior middle

temporal gyrus, and the left inferior parietal lobule

(Almeida et al. 2013; Garcea and Mahon 2014). The left

and right medial fusiform gyri are associated with visual

processing of surface properties of objects, and the Left

Dorsal Occipital Cortex is linked to the visual processing

of volumetric/3D information about objects. In addition,

the Left Inferior Parietal Lobule (Supramarginal Gyrus,

Fig. 7 Brain map with twelve ROIs (reproduced from Fig. 2 in Garcea et al., under review)
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Anterior Intraparietal Sulcus) is a region that is important

for representing manipulation knowledge (i.e., the knowl-

edge of how to correctly grasp and manipulate an object).

The dataset used in this paper was collected at the

Rochester Center for Brain Imaging (University of

Rochester) with 12 healthy, right-handed individuals (for

full details of the experimental paradigm, MRI acquisition,

preprocessing, and analysis, see Garcea et al., under

review). Data were collected in two different tasks in

which participants were shown images of various tools:

hammer, scissors, screwdriver, knife, pliers, and cork-

screw. In one task, participants were asked to pantomime

the use of a presented object with their right hand during

the fMRI, while during the second task participants were

asked to and identify the images.

We looked at correlations in BOLD time series between

each pair of 12 different regions. A two tailed t test was

performed, and statistically significant values (at t[ 2:75 )

were selected. For each pair of regions, the temporal corre-

lations in BOLD time series were computed separately for

the task in which participants were pantomiming the object

use and identifying the objects. The data consisted of two

12� 12 correlation matrices for each subjects (one matrix

for pantomiming and one for viewing). These matrices were

subtracted from one another to create two matrices, one

where pantomiming was greater than visual, and a second

where the visual was larger than pantomiming.

3.1 Pantomiming greater than viewing

In Fig. 8 we show the edges where pantomiming was

greater than for identification. We highlight edges in the

largest book graph with red, orange, and yellow repre-

senting the different overlapping triangles.

We note in the graph we are seeing stronger connec-

tivity between two of the motor regions: Left Dorsal Pre-

motor Cortex and the Primary Motor Cortex for the Right

Hand. We note that Primary Motor Cortex for the Right

Foot is not connected to the graph, which is consistent with

the fact that the movement of this limb was not prompted

by the stimuli.

We note that this network contains the book graph B3,

with a spine between the Left Dorsal Premotor Cortex and

the PrimaryMotor Cortex for the Right Hand, and three other

regions: Left Inferior Parietal, Left Lateral Occipital Cortex,

and the Right Lateral Occipital Cortex. This is consistent

Fig. 8 Edge clustering centrality: pantomiming greater than viewing
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with neurological expectations as these three ’are involved in

accessing object-directed manipulation knowledge from the

visual structure of objects (for details and discussion, see

Garcea et al., under review). Furthermore, the result that the

Left Dorsal Premotor Cortex is on the spine of the graph is

consistent with the fact that both of this motor region is part

of the tool network (Garcea and Mahon 2014). Although the

Left and Right Lateral Occipital Cortex regions are associ-

ated with visual object recognition, there is connectivity

between each of them and the motor regions on the book

spine. The reason for this is that in order to pantomime a tool,

there has to be a connection among visual regions first (as the

subject recognizes the tool) and then a connection between

motor regions as the tool is manipulated (Almeida et al.

2013; Mahon et al. 2013).

3.2 Viewing greater than pantomiming

In Fig. 9 we show connections where edges are stronger

during object identification then during pantomime of

object use.

Examining edges that were stronger during visual object

identification than pantomiming, we see a network of four

regions (Left Medial Fusiform Gyrus, Left Posterior Mid-

dle Temporal Gyrus, Left Lateral Occipital Complex, and

the Right Lateral Occipital Complex) that form the book

graph B2. These connections are expected since these

edges connect regions of the temporal and occipital lobes

which support the visual processing and representation of

tools. The edge with greatest clustering centrality is the

edge between Left Lateral Occipital Complex and Left

Posterior Middle Temporal Gyrus and is found in two local

subgraphs, and is the ‘‘spine’’ of the book graph B2.

3.3 Comparison with other edge metrics

As mentioned in the introduction, there are other known

methods to quantify edge centrality, including edge

betweenness centrality, j-path edge centrality, and span-

ning edge centrality.

An analysis using edge betweenness centrality produced

results that were similar to those obtained using edge clus-

tering centrality for the network where the pantomiming

effects were greater than the viewing effects (see Fig. 10).

We note that j-path edge centrality will have similar

results to edge betweenness centrality as the diameter of the

Fig. 9 Edge clustering centrality: viewing greater than pantomiming
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graph is small (4) and there is only one pair of regions (Left

Anterior Interparietal Sulcus and the Left Dorsal Occipital

Complex) that are distance 4 apart. Spanning edge centrality

is not relevant here as the graph is not connected.

4 Conclusion and future work

There are many possible variations for edge clustering

centrality which include directed and weighted edges. A

directed version could count the number of transitive tri-

angles that contain a given edge. For example, for the

graph shown in Fig. 11, the edge e is the most central as it

is contained in two transitive (acyclic) triangles, while all

other edges are only contained in a single triangle.

Another possible variation for directed graphs would be

to count the number of directed triangles, or larger cycles

that contain a given edge.

Edge clustering centrality could also be modified for use

in graphs where the edges have weights. The weighted

edge clustering centrality of an edge could then be defined

to be the total weight of edges in transitive (acyclic) tri-

angles that contain the given edge.
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